


Reprints or correspondence: Dr. Robert C. Owens, Jr, Dept. of Clinical Pharmacy Services and Div. of Infectious Diseases, Maricopa Medical Center, 22 Brantall St., Portland, ME 04102 (owensrc@mmc.org).

Clinical Infectious Diseases 2007;44:1380–91 © 2007 by the Infectious Diseases Society of America. All rights reserved. 1058–4836/2007/4102-0052/00 DOI: 10.1086/518774

Extended-Spectrum β-Lactamases, Food, and Cephalosporin Use in Food Animals

To the Editor—Infections caused by Escherichia coli and other gram-negative bacteria are very common. A large proportion of these strains are resistant to oral antibiotics. When resistance to injectable antibiotics, such as third- and fourth-generation cephalosporins, is also present, the patient can experience grave consequences, because injectable antibiotics are often the last line of defense and are critically important in treating many life-threatening infections, including bacteremia and meningitis. Thus, the unexpected and increasing appearance of extended-spectrum β-lactamases (ESBLs) among community isolates of E. coli and other bacteria, as outlined in 2 articles recently published in Clinical Infectious Diseases [1, 2], is of major concern.

However, these articles do not mention that food might be a very important vehicle in the spread of these drug-resistant bacteria, as was again highlighted by a recent study from Spain [3]. The use of third- and fourth-generation cephalosporins in food animals results in the development of bacteria carrying ESBLs. This involves not only food-associated pathogens, such as Salmonella species [4], but also E. coli. These drug-resistant bacteria then spread to people via food and other routes (e.g., ground water). This is occurring around the world [4–7]. These drug-resistant bacteria and their genes (including CTX-M and CMY β-lactamases) are now widespread.

Antibiotic-resistant strains of E. coli probably spread via food much more commonly than we currently appreciate [8]. If drug-resistant bacteria are widespread in the intestinal tracts of people in the community, the treatment of these people with antibiotics will frequently result in the amplification of drug-resistant bacteria (and in the transfer of the genes encoding drug resistance into other bacteria). If such individuals are hospitalized for an incidental reason (e.g., biliary disease or trauma), then these bacteria can spread to other patients, especially if infection-control practices are not universally followed.

Worldwide, third-generation cephalosporins, such as cefotizox, are widely used in many different food animals, because there are often only minimal restrictions in place on its use. Indeed, in the United States in 2001, cefotizox was injected into the eggs of meat chickens just before hatching in 21 (78%) of 27 hatcheries (the hatcheries studied produced >500 million chickens per year; this US Food and Drug Administration data was obtained under a Freedom of Information search). In Australia, attempts to limit the widespread use of cefotizox by placing “label restraints” on its use have been ignored by the agriculture regulatory agency. The use of third- and fourth-generation cephalosporins in most developing countries is even more widespread, because there are usually even fewer controls in place.

Recently, a fourth-generation cephalosporin (cefdinirnone) was approved for use by the European Union, and it is likely to be approved soon by the US Food and Drug Administration, without any label restrictions. This will mean that it can be used in any food animal for almost any indication. Restrictions, such as requiring a prescription to dispense the drug, seem to make little difference in effective control, as is evidenced by the widespread use of fluoroquinolones and the resultant drug resistance that recently lead the US Food and Drug Administration to finally withdraw approval for their use in poultry (but only after a long and drawn-out legal battle with the manufacturer) [9]. Better "late than never," but why did we have to wait for drug resistance to be so widespread before taking action? How could we possibly have expected that the use of "critical" antibiotics, such as fluoroquinolones or third-generation cephalosporins, would not have resulted in the development of drug resistance?

Unlabeled but high levels of broad-spectrum cephalosporins (e.g., cefotizox) [10] are allowed in some foods (maximum residual level, 6 mg per kg). These high levels mean that cefotizox is used instead of narrower-spectrum antibiotics, because the much higher maximum residual levels of cefotizox result in a much shorter period of withholding the treated animal from slaughter than would be the case with many other antibiotics. These high levels will also be an allergic risk to some people.

This all seems to be a recipe for disaster. We have already seen early warning signs that the use of ESBLs is starting to get out of control [1–7]. Surely, now is the time to act. The World Health Organization has defined third- and fourth-generation cephalosporins as being "critically important" for use in people [11]. Clearly, these antibiotics should not be used in food animals at all (or their use should be much
more severely curtailed than is currently the case in most of the world). We also need to dramatically lower the residual levels of these drugs that we allow in some foods. The current widespread and increasing use of these antibiotics in food animals is inappropriate and poses a needless additional risk to both people in hospitals and the general community.

Acknowledgments


Peter Collignon1,2 and Frank M. Aarestrup3
Infectious Diseases Unit and Microbiology Department, The Canberra Hospital, Canberra Clinical School—Australian National University and Sydney University, Canberra, Australia; and
Community Reference Laboratory for Antimicrobial Resistance and World Health Organization Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens, Danish Institute for Food and Veterinary Research, Copenhagen, Denmark

References


The Potential Impact of Survivor Treatment Selection Bias on the Perceived Efficacy of Valvular Surgery in the Treatment of Infective Endocarditis

To the Editor—Aksoy et al. [1] examined the role of valve surgery among a cohort of patients with infective endocarditis. Similar to other recent studies [2–4], they used propensity score analysis to adjust for treatment selection bias. Aksoy et al. [1] observed that surgical therapy was associated with a significant long-term survival benefit. However, none of the 4 investigations [1–4] accounted for the impact of timing of surgery after diagnosis and, thus, the possibility of "survivor treatment selection bias" [5] in their analyses. This analytic bias, also termed "time-dependent bias" [6], occurs because patients who live longer are more likely to receive treatment than patients who die early. As a result of this bias, researchers can mistakenly interpret the correlation of longer survival with use of a particular treatment as evidence that treatment improves survival. Thus, survivor treatment selection bias can make ineffective treatments appear to be beneficial, which could lead to erroneous conclusions. It is noteworthy that a recent systematic report [6] examined the prevalence of survivor treatment selection bias and found that 35 (67.3%) of 52 studies identified in leading clinical journals were susceptible to this bias. Moreover, appropriate analyses that corrected the bias could have qualitatively changed the respective study’s conclusions in more than half of these studies. This is of particular concern in the observational work published to date [1–4], given the high risk of early death in patients with infective endocarditis—16.9% inhospital mortality in the study by Aksoy et al. [1]. Patients who do not experience an early death have a greater likelihood of undergoing surgery. Several analytical approaches can help minimize this bias [5–7] and were used in recent work [8] that examined the role of valve surgery in the treatment of infective endocarditis. After adjusting for survivor bias, valve surgery in left-sided endocarditis was not associated with a survival benefit and could be associated with increased 6-month mortality [8]. Recognizing the potential impact of survivor treatment selection bias on the findings of Aksoy et al. [1] and other observational investigations [2–4], well-designed prospective investigations that address this methodological limitation are needed to further evaluate the role of valve surgery in infective endocarditis treatment and to define what group of patients would benefit from this intervention.

Acknowledgments

Potential conflicts of interest. L.M.T. and L.M.B.: no conflicts.